RECOGNISING ACHIEVEMENT

ADVANCED SUBSIDIARY GCE

Additional materials: Answer Booklet (8 pages)

Graph paper MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.

Section A (36 marks)

1 (i) Write down the matrix for reflection in the y-axis.
(ii) Write down the matrix for enlargement, scale factor 3, centred on the origin.
(iii) Find the matrix for reflection in the y-axis, followed by enlargement, scale factor 3, centred on the origin.

2 Indicate on a single Argand diagram
(i) the set of points for which $|z-(-3+2 \mathrm{j})|=2$,
(ii) the set of points for which $\arg (z-2 \mathrm{j})=\pi$,
(iii) the two points for which $|z-(-3+2 \mathrm{j})|=2$ and $\arg (z-2 \mathrm{j})=\pi$.

3 Find the equation of the line of invariant points under the transformation given by the matrix $\mathbf{M}=\left(\begin{array}{rr}-1 & -1 \\ 2 & 2\end{array}\right)$.

4 Find the values of A, B, C and D in the identity $3 x^{3}-x^{2}+2 \equiv A(x-1)^{3}+\left(x^{3}+B x^{2}+C x+D\right)$.

5 You are given that $\mathbf{A}=\left(\begin{array}{lll}1 & 2 & 4 \\ 3 & 2 & 5 \\ 4 & 1 & 2\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{rrr}-1 & 0 & 2 \\ 14 & -14 & 7 \\ -5 & 7 & -4\end{array}\right)$.
(i) Calculate $\mathbf{A B}$.
(ii) Write down \mathbf{A}^{-1}.

6 The roots of the cubic equation $2 x^{3}+x^{2}-3 x+1=0$ are α, β and γ. Find the cubic equation whose roots are $2 \alpha, 2 \beta$ and 2γ, expressing your answer in a form with integer coefficients.

7
(i) Show that $\frac{1}{3 r-1}-\frac{1}{3 r+2} \equiv \frac{3}{(3 r-1)(3 r+2)}$ for all integers r.
(ii) Hence use the method of differences to find $\sum_{r=1}^{n} \frac{1}{(3 r-1)(3 r+2)}$.

Section B (36 marks)

8 A curve has equation $y=\frac{2 x^{2}}{(x-3)(x+2)}$.
(i) Write down the equations of the three asymptotes.
(ii) Determine whether the curve approaches the horizontal asymptote from above or below for
(A) large positive values of x,
(B) large negative values of x.
(iii) Sketch the curve.
(iv) Solve the inequality $\frac{2 x^{2}}{(x-3)(x+2)}<0$.

9 Two complex numbers, α and β, are given by $\alpha=2-2 \mathrm{j}$ and $\beta=-1+\mathrm{j}$.
α and β are both roots of a quartic equation $x^{4}+A x^{3}+B x^{2}+C x+D=0$, where A, B, C and D are real numbers.
(i) Write down the other two roots.
(ii) Represent these four roots on an Argand diagram.
(iii) Find the values of A, B, C and D.

10 (i) Using the standard formulae for $\sum_{r=1}^{n} r^{2}$ and $\sum_{r=1}^{n} r^{3}$, prove that

$$
\begin{equation*}
\sum_{r=1}^{n} r^{2}(r+1)=\frac{1}{12} n(n+1)(n+2)(3 n+1) \tag{5}
\end{equation*}
$$

(ii) Prove the same result by mathematical induction.

